RNAi-mediated knockdown of dystrophin expression in adult mice does not lead to overt muscular dystrophy pathology.
نویسندگان
چکیده
Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disorder caused by mutations in the dystrophin gene. DMD has a complex and as yet incompletely defined molecular pathophysiology. The peak of the pathology attributed to dystrophin deficiency happens between 3 and 8 weeks of age in mdx mice, the animal model of DMD. Accordingly, we hypothesized that the pathology observed with dystrophin deficiency may be developmentally regulated. Initially, we demonstrated that profound small interfering RNA-mediated dystrophin knockdown could be achieved in mouse primary muscle cultures. The use of adeno-associated virus vectors to express short-hairpin RNAs targeting dystrophin in skeletal muscle in vivo yielded a potent and specific dystrophin knockdown, but only after approximately 5 months, indicating the very long half-life of dystrophin. Interestingly, and in contrast to what is observed in congenital dystrophin deficiency, long-term ( approximately 1 year) dystrophin knockdown in adult mice did not result, per se, in overt dystrophic pathology or upregulation of utrophin. This supports our hypothesis and suggests new pathophysiology of the disease. Furthermore, taking into account the rather long half-life of dystrophin, and the notion that the development of pathology is age-dependent, it indicates that a single gene therapy approach before the onset of pathology might convey a long-term cure for DMD.
منابع مشابه
Systemic Antisense Therapeutics for Dystrophin and Myostatin Exon Splice Modulation Improve Muscle Pathology of Adult mdx Mice
Antisense-mediated exon skipping is a promising approach for the treatment of Duchenne muscular dystrophy (DMD), a rare life-threatening genetic disease due to dystrophin deficiency. Such an approach can restore the disrupted reading frame of dystrophin pre-mRNA, generating a truncated form of the protein. Alternatively, antisense therapy can be used to induce destructive exon skipping of myost...
متن کاملRepression-free utrophin-A 5’UTR variants
Mutation in the dystrophin gene results Duchenne Muscular Dystrophy (DMD), an X-linked fatal neuromuscular disorder. Dystrophin deficiency can be compensated by upregulation of utrophin, an autosomal homologue of dystrophin. But the expression of utrophin in adults is restricted to myotendinous and neuromuscular junctions. Therefore utrophin upregulation throughout the muscle fiber can only be ...
متن کاملP164: Adeno-Associated Viral Vectors in Duchenne Muscular Dystrophy
Duchenne muscular dystrophy (BMD) is an inherited X-link disease. The incidence of this muscle-wasting disease is 1:5000 male live births. Mutation in the gene coding for dystrophin is the main cause of BMD. Most cases of this disease succumb to respiratory and cardiac failure in 3rd to 4th decades. The slow progression of BMD and recent achievement of gene therapies make it as an appropriate c...
متن کاملIncreasing 7 1-integrin promotes muscle cell proliferation, adhesion, and resistance to apoptosis without changing gene expression
Liu J, Burkin DJ, Kaufman SJ. Increasing 7 1-integrin promotes muscle cell proliferation, adhesion, and resistance to apoptosis without changing gene expression. Am J Physiol Cell Physiol 294: C627–C640, 2008. First published November 28, 2007; doi:10.1152/ajpcell.00329.2007.—The dystrophin-glycoprotein complex maintains the integrity of skeletal muscle by associating laminin in the extracellul...
متن کاملThe Diagnostic Value of Utrophin in Mild Dystrophinopathy (Becker Muscular Dystrophy)
Background and Objective: Becker Muscular Dystrophy (BMD) is a subtype of dystrophinopathies and designated as “mild form of dystrophinopathy”. The frequency rate of the disease is 1:18000 to 1:30000 in different populations and the symptoms are presented at about 8-9 years of age. The diagnostic panel composed of Serum Ceratin Kinase (SCK) measurement, Electromyography (EMG), and as a major...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 17 17 شماره
صفحات -
تاریخ انتشار 2008